Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. 2007;6:182–7.
Article
PubMed
Google Scholar
Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:27–32.
Article
PubMed
Google Scholar
Skilbeck CE, Wade DT, Hewer RL, Wood VA. Recovery after stroke. J Neurol Neurosurg Psychiatry. 1983;46:5–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil. 2007;4:1–7.
Article
Google Scholar
Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:1–10.
Article
Google Scholar
Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21:307–14.
Article
PubMed
Google Scholar
Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD006185.pub5.
Article
PubMed Central
PubMed
Google Scholar
Bang DH, Shin WS. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: a randomized controlled pilot trial. NeuroRehabilitation. 2016;38:343–9.
Article
PubMed
Google Scholar
Yoshikawa K, Mizukami M, Kawamoto H, Sano A, Koseki K, Sano K, Asakawa Y, Kohno Y, Nakai K, Gosho M, Tsurushima H. Gait training with hybrid assistive limb enhances the gait functions in subacute stroke patients: a pilot study. NeuroRehabilitation. 2017;40:87–97.
Article
PubMed
Google Scholar
Gandolfi M, Geroin C, Tomelleri C, Maddalena I, Kirilova Dimitrova E, Picelli A, Smania N, Waldner A. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study. Eur J Phys Rehabil Med. 2017;53:870–82.
Article
PubMed
Google Scholar
Gandolfi M, Valè N, Posteraro F, Morone G, Dell’orco A, Botticelli A, Dimitrova E, Gervasoni E, Goffredo M, Zenzeri J, et al. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: a scoping review. Eur J Phys Rehabil Med. 2021;57:831–40.
Article
PubMed
Google Scholar
Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.
Article
PubMed
Google Scholar
Daly JJ, Ruff RL. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Sci World J. 2007;7:2031–45.
Article
Google Scholar
Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;5:CD006185.
PubMed
Google Scholar
Aprile I, Iacovelli C, Goffredo M, Cruciani A, Galli M, Simbolotti C, Pecchioli C, Padua L, Galafate D, Pournajaf S, Franceschini M. Efficacy of end-effector robot-assisted gait training in subacute stroke patients: clinical and gait outcomes from a pilot bi-centre study. NeuroRehabilitation. 2019;45:201–12.
Article
PubMed
Google Scholar
Hsu CY, Cheng YH, Lai CH, Lin YN. Clinical non-superiority of technology-assisted gait training with body weight support in patients with subacute stroke: a meta-analysis. Ann Phys Rehabil Med. 2019;63(6):535–42.
Article
PubMed
Google Scholar
Park IJ, Park JH, Seong HY, You JSH, Kim SJ, Min JH, Ko HY, Shin YI. Comparative effects of different assistance force during robot-assisted gait training on locomotor functions in patients with subacute stroke: an assessor-blind, randomized controlled trial. Am J Phys Med Rehabil. 2019;98:58–64.
Article
PubMed
Google Scholar
Morone G, Masiero S, Coiro P, De Angelis D, Venturiero V, Paolucci S, Iosa M. Clinical features of patients who might benefit more from walking robotic training. Restor Neurol Neurosci. 2018;36:293–9.
PubMed
Google Scholar
Mayr A, Quirbach E, Picelli A, Kofler M, Smania N, Saltuari L. Early robot-assisted gait retraining in non-ambulatory patients with stroke: a single blind randomized controlled trial. Eur J Phys Rehabil Med. 2018;54:819–26.
PubMed
Google Scholar
Cho JE, Yoo JS, Kim KE, Cho ST, Jang WS, Cho KH, Lee WH. Systematic review of appropriate robotic intervention for gait function in subacute stroke patients. Biomed Res Int. 2018;2018:4085298.
PubMed Central
PubMed
Google Scholar
Alingh JF, Fleerkotte BM, Groen BE, Rietman JS, Weerdesteyn V, van Asseldonk EHF, Geurts ACH, Buurke JH. Effect of assist-as-needed robotic gait training on the gait pattern post stroke: a randomized controlled trial. J Neuroeng Rehabil. 2021;18:26.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020;10:CD006185.
PubMed
Google Scholar
Moucheboeuf G, Griffier R, Gasq D, Glize B, Bouyer L, Dehail P, Cassoudesalle H. Effects of robotic gait training after stroke: a meta-analysis. Ann Phys Rehabil Med. 2020;63:518–34.
Article
PubMed
Google Scholar
Mustafaoglu R, Erhan B, Yeldan I, Gunduz B, Tarakci E. Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial. Acta Neurol Belg. 2020;120(2):335–44.
Article
PubMed
Google Scholar
Reichl S, Weilbach F, Mehrholz J. Implementation of a gait center training to improve walking ability and vital parameters in inpatient neurological rehabilitation—a cohort study. J Neuroeng Rehabil. 2020;17:38.
Article
PubMed Central
PubMed
Google Scholar
Wright A, Stone K, Martinelli L, Fryer S, Smith G, Lambrick D, Stoner L, Jobson S, Faulkner J. Effect of combined home-based, overground robotic-assisted gait training and usual physiotherapy on clinical functional outcomes in people with chronic stroke: a randomized controlled trial. Clin Rehabil. 2020;35(6):882–93.
Article
PubMed Central
PubMed
Google Scholar
Molteni F, Guanziroli E, Goffredo M, Calabrò RS, Pournajaf S, Gaffuri M, Gasperini G, Filoni S, Baratta S, Galafate D, et al. Gait recovery with an overground powered exoskeleton: a randomized controlled trial on subacute stroke subjects. Brain Sci. 2021;11:104.
Article
PubMed Central
PubMed
Google Scholar
Lin LF, Huang SW, Chang KH, Ouyang JH, Liou TH, Lin YN. A novel robotic gait training system (RGTS) may facilitate functional recovery after stroke: a feasibility and safety study. NeuroRehabilitation. 2017;41:453–61.
Article
PubMed
Google Scholar
Sulter G, Steen C, De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke. 1999;30:1538–41.
Article
CAS
PubMed
Google Scholar
Hesse S, Schattat N, Mehrholz J, Werner C. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion. NeuroRehabilitation. 2013;33(1):77–84.
Article
CAS
PubMed
Google Scholar
Burnfield JM, Shu Y, Buster T, Taylor A. Similarity of joint kinematics and muscle demands between elliptical training and walking: implications for practice. Phys Ther. 2010;90:289–305.
Article
PubMed
Google Scholar
Gladstone DJ, Danells CJ, Black SE. The Fugl–Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16:232–40.
Article
PubMed
Google Scholar
Benaim C, Pérennou DA, Villy J, Rousseaux M, Pelissier JY. Validation of a standardized assessment of postural control in stroke patients: the postural assessment scale for stroke patients (PASS). Stroke. 1999;30:1862–8.
Article
CAS
PubMed
Google Scholar
Blum L, Korner-Bitensky N. Usefulness of the Berg balance scale in stroke rehabilitation: a systematic review. Phys Ther. 2008;88:559–66.
Article
PubMed
Google Scholar
Pandian S, Arya KN, Kumar D. Minimal clinically important difference of the lower-extremity Fugl–Meyer assessment in chronic-stroke. Top Stroke Rehabil. 2016;23:233–9.
Article
PubMed
Google Scholar
Kim HY, Shin JH, Yang SP, Shin MA, Lee SH. Robot-assisted gait training for balance and lower extremity function in patients with infratentorial stroke: a single-blinded randomized controlled trial. J Neuroeng Rehabil. 2019;16:99.
Article
PubMed Central
PubMed
Google Scholar
Bang DH, Shin WS, Choi SJ, Choi HS. Comparison of the effect of weight-bearing and non-weight-bearing positions on knee position sense in patients with chronic stroke. J Phys Ther Sci. 2015;27:1203–6.
Article
PubMed Central
PubMed
Google Scholar
Bolognini N, Russo C, Edwards DJ. The sensory side of post-stroke motor rehabilitation. Restor Neurol Neurosci. 2016;34:571–86.
PubMed Central
PubMed
Google Scholar
Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci. 1998;1:64–8.
Article
CAS
PubMed
Google Scholar
Johansson K, Lindgren I, Widner H, Wiklund I, Johansson BB. Can sensory stimulation improve the functional outcome in stroke patients? Neurology. 1993;43:2189–92.
Article
CAS
PubMed
Google Scholar
Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lewis GN, Byblow WD. The effects of repetitive proprioceptive stimulation on corticomotor representation in intact and hemiplegic individuals. Clin Neurophysiol. 2004;115:765–73.
Article
PubMed
Google Scholar
Magnusson M, Johansson K, Johansson BB. Sensory stimulation promotes normalization of postural control after stroke. Stroke. 1994;25:1176–80.
Article
CAS
PubMed
Google Scholar
Marconi B, Filippi GM, Koch G, Giacobbe V, Pecchioli C, Versace V, Camerota F, Saraceni VM, Caltagirone C. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients. Neurorehabil Neural Repair. 2011;25:48–60.
Article
PubMed
Google Scholar
Nudo RJ, Friel KM, Delia SW. Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology. 2000;39:733–42.
Article
CAS
PubMed
Google Scholar
Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 1993;70:733–41.
Article
CAS
PubMed
Google Scholar
Cuypers K, Levin O, Thijs H, Swinnen SP, Meesen RL. Long-term TENS treatment improves tactile sensitivity in MS patients. Neurorehabil Neural Repair. 2010;24:420–7.
Article
PubMed
Google Scholar
Floel A, Hummel F, Duque J, Knecht S, Cohen LG. Influence of somatosensory input on interhemispheric interactions in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22:477–85.
Article
PubMed Central
PubMed
Google Scholar
Meesen RL, Cuypers K, Rothwell JC, Swinnen SP, Levin O. The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum Brain Mapp. 2011;32:872–82.
Article
PubMed
Google Scholar
Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res. 2000;131:135–43.
Article
CAS
PubMed
Google Scholar
Tinazzi M, Zarattini S, Valeriani M, Romito S, Farina S, Moretto G, Smania N, Fiaschi A, Abbruzzese G. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation. Exp Brain Res. 2005;161:457–64.
Article
PubMed
Google Scholar
Vér C, Emri M, Spisák T, Berényi E, Kovács K, Katona P, Balkay L, Menyhárt L, Kardos L, Csiba L. The effect of passive movement for paretic ankle–foot and brain activity in post-stroke patients. Eur Neurol. 2016;76:132–42.
Article
PubMed
Google Scholar
Bergmann J, Krewer C, Bauer P, Koenig A, Riener R, Muller F. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2018;54:397–407.
Article
PubMed
Google Scholar